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Abstract

This work proposes a concept on a novel scanning phased
array, based on thin film ferroelectric phase shifters, for an
X-band precipitation monostatic radar.

1.0 Introduction

NASA Glenn Research Center (GRC) and Colorado State
University are investigating an innovative X-band ferroelectric
reflectarray antenna (FRA) system for cloud and precipitation
radar applications, especially for spaceborne applications. The
FRA can be used as a dual-polarization antenna, thus providing
capability to perform the full covariance matrix measurements
of the precipitation medium for remote sensing applications
from ground, air and space. These measurement capabilities will
enhance our ability to discern between different precipitation
types and sizes, and improve measurement resolution. The FRA
provides viable electronic beam steering over at least a +45°
swath, which will offer substantial performance and reliability
benefits over existing precipitation radar antennas, as well as
mechanically steered antennas or other electronic scan systems.
Most importantly, the FRA promises a tenfold cost advantage
over conventional phased arrays, a 5 times efficiency improve-
ment, and elimination of existing thermal management prob-
lems associated with conventional phased arrays.

Unlike conventional directly-radiating phased arrays, the
FRA aperture is inherently reciprocal, thus ideally suited for
radar. The FRA promises to be substantially less expensive
than current state-of-the-art phased array antennas. It uses
ferroelectric phase shifters to enable beam steering, and
vertical and horizontal polarization will be accomplished using
switching circuitry at the feed. The high power-handling
capabilities of the ferroelectric phase shifters (relative to
semiconductors) accentuate the applicability of this
technology for radar applications. Moreover, because of the
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quasi-optical feed, the aperture can be large compared to
directly-radiating arrays to provide high spatial resolution.
This is particularly important for enhancing the success for
cloud and precipitation measurements that are affected by
spatial gradients. The algorithm development teams conduct-
ing spaceborne precipitation observations have determined
that spatial non uniformity within the beams are an important
source of error (Ref. 1).

2.0 Rationale

Spaceborne microwave radar has proven to be an outstand-
ing instrument for precipitation and wind velocity measure-
ments, but these instruments are expensive to build, launch
and operate. Due mainly to the high value of the data returned,
and partly to the high cost of follow-on missions, the Tropical
Rainfall Measurement Mission (TRMM) and QuikSAT mis-
sions have been extended well past their intended completion
dates. A recently published report by the National Academy of
Sciences recommends that NASA implement a 12-yr program
that would deploy 15 missions dedicated to studying various
aspects of the Earth’s environment, with a goal of building a
comprehensive model of the Earth’s climate, where the
Earth’s ecology is treated as a unified system (Ref. 2). Several
of these missions require microwave radar measurements at
frequencies from L-band (1 to 2 GHz) up to Ka-band (26.5 to
40 GHz). Given the limited budget and high cost of missions
that utilize microwave radar instruments, it will be challenging
to comply with the National Academy of Science’s recom-
mendations even if the requested funding becomes available.
The FRA is an electronically steerable microwave radar
antenna promising better functionality than current state-of-
the-art beam-steerable phased array antennas, yet is consider-
ably less costly to design, fabricate, and operate. Mass is
expected to be about the same as a comparable directly-
radiating phased array.



2.1 Dual Polarization Precipitation Radar Using
Ferroelectric Reflectarray Antenna

Dual-polarization precipitation radars provide information
about the precipitation particle microphysics. The use of elec-
tronic scan in the application for spaceborne radars has been
well established. Similarly rapid scan can be used for ground
based radars (Ref. 3). The FRA can be designed to reflect
either the same sense or opposite sense polarization of the
feed. Figure 1(a) shows schematically the ground-based pola-
rimetric radar measuring the backscatter covariance matrix of
precipitation volume noting that the propagation or forward
scatter properties also influence the measurements. There are
well established theories that can use the differential propaga-
tion phase for quantitative precipitation estimation. Once the
radar system is demonstrated on the ground, it is the obvious
next step to demonstrate the same for spaceborne and airborne
applications. Figure 1(b) shows the spaceborne implementa-
tion of the same system.

The two microwave radar instruments with demonstrated
precipitation measurements are the Precipitation Radar—1
(PR-1) (Ref. 4) and the SeaWinds radars (Refs. 5 and 6). The
FRA draws its legacy from these two antennas. Although
PR-1 and SeaWinds operate at similar frequencies (13.6 and
13.4 GHz, respectively), they are used for different purposes.
PR-1 is one of two primary instruments on the TRMM mis-
sion (the other instrument is the TRMM Microwave Imager
(TMI), and data from the two complement each other). PR—1
is used to measure the amount and type of precipitation (water
and/or ice) in selected three-dimensional columns from the
earth’s surface up to a height of about 20 km. This data is
crucial for climate modeling and weather forecasting. TRMM
was launched in 1997 with a planned lifetime of 3 years, and
remained operational for 8 years. The total mission cost was
approximately $750 million (Ref. 7). The fact that its lifetime
was extended several times is a testament to the value of the
data that was generated, and the cost highlights the expensive
nature of spaceborne microwave radar systems. The Global
Precipitation Measurement Mission (GPM), scheduled for
launch in the 2010 to 2013 time frame, carries on the TRMM
legacy. The GPM mission expands the use of radar precipita-
tion measurements by including both 35.5 and 13.6 GHz
phased array precipitation radars (Refs. 8 and 9). These two

~
v ‘6" ~
A

(b)
Figure 1.—Polarimetric electronic-scan radar measuring

the backscatter covariance matrix of precipitation volume.
(a) Initial application. (b) Ultimate application.
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antennas are collectively named PR-2. The fact that the inter-
national program is placing such a high emphasis on a mission
for which microwave radar is a primary instrument illustrates
the value of these measurements. The second major use of
microwave radar for Earth Observation is the SeaWinds radar
antenna, which is the only instrument on NOAA’s high-profile
QuikScat mission. SeaWinds is used to measure wind speed
and direction near the sea surface, and thus is valuable for
hurricane tracking.

NASA and NOAA'’s ambitions for Earth Science Observa-
tion missions go far beyond simply replacing instruments that
are operating past their anticipated lifetimes. However, budget
constraints mitigate these ambitions, and new technologies are
needed so as to provide the needed measurement capabilities.
NASA, together with partners from other United States as well
as international agencies, has a strong need for novel instru-
mentation that expands our understanding of how various
forcing factors and feedback mechanisms affect the global
climate. Understanding the amount and distribution of water
across the globe is essential to understanding the factors that
shape the Earth’s climate, and the coupling between these
factors. Questions that the FRA can help answer include: how
is precipitation distributed and re-distributed over time, how
are sea surface temperature and sea currents affected by sea
winds, how much water is in the form of ice, and how quanti-
tatively do we understand the extent to which ice in the polar
regions melts and re-freezes.

The realities of budget constraints place added emphasis on
the need to develop instruments and missions that generate the
needed data in a cost-efficient manner. The National Academy
of Sciences Decadal report (Ref. 2) recommends that NASA
implement a “minimal yet robust observational component of
an Earth information system that is capable of addressing a
broad range of societal needs.” The report suggests a number
of missions that should be carried out over the next 15 years,
the instruments needed for these missions, and ranks the mis-
sions in their order of importance.

3.0 Technology

The reflectarray is a cost-effective, high-efficiency alterna-
tive to directly-radiating phased array antennas. A key advan-
tage of reflectarray antennas over conventional phased arrays is
elimination of the complex beam-forming manifold and costly
transmit/receive modules. The reflectarray is also reciprocal—
the same aperture can be used for transmit and receive func-
tions. But a viable technique for including variable phase shift
with the printed radiators to permit beam scanning has proven
elusive. The ferroelectric reflectarray holds promise to dramati-
cally reduce manufacturing costs of phased arrays and alleviate
thermal management problems associated with microwave
integrated circuit transmit arrays. Successful technological and
economic operation depends on the realization of very low loss,
very low cost phase shifters—which we have demonstrated.



3.1 Antenna

A scanning reflectarray consists of a flat surface with
diameter D, containing MxN' integrated phase shifters and
MXxN patch radiators with inter-element separation d, that is
illuminated by a single feed at a virtual focus located a dis-
tance F from the surface such that /D = 1 (Fig. 2). This value
of F/D is a reasonable compromise between feed gain (and
blockage) for proper illumination and modulo 2z effects.

The control algorithm is nearly identical to that of a con-
ventional phased array, the exception being an a priori setting
of all phase shifters to compensate for the spherical wave-front
from the feed. That is, in order for the reflectarray to emulate a
parabolic surface, the phase shifters are adjusted to compen-
sate for the increasing path length from the aperture center
towards the perimeter. If the phase shifters are to be integrated
onto the radiating surface they must be very small (i.e., <A/2).
The modulated signal from the feed passes through the reflect-
mode phase shifters and is re-radiated as a focused beam in
essentially any preferred direction in the hemisphere in front
of the antenna, as in a conventional phased array. Of course
the physics in sofar as inter-element spacing, mutual coupling,
scan loss, etc. is concerned is the same as for a conventional
array that uses a transmission line manifold to distribute the
signal among the MxN elements. The most troublesome issue
with implementing a scanning reflectarray arises from the fact
that the phase shifters are necessarily between the feed and the
patch radiating elements. Hence, they introduce line loss in
front of the first stage low noise amplifier (LNA) and can
cause system noise temperature to escalate in the case of a
receive array. Analogously, in the case of a transmit array, the

Figure 2.—Prototype 615 element ferroelectric reflectarray
and low power controller. Diameter is 30 cm.

"The actual number of elements is truncated for a practical circular aperture of
diameter D inscribed inside the rectangular aperture defined by MxN. The
FRA to be developed will have a circular aperture containing 2560 elements.
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Figure 3.—Square root of the number of elements.

phase shifters largely determine system efficiency. However,
most of the Effective Isotropic Radiated Power (EIRP) can be
generated by the aperture instead of the amplifier, so there is
an inherent spacecraft prime power advantage over a conven-
tional directly radiating array. Figure 3 shows calculated EIRP
and power consumption for a reflectarray and a Monolithic
Microwave Integrated Circuit (MMIC) array.” The MMIC
array used a microstrip corporate feed network, which results
in an additional inefficiency because of significant dissipation
in the manifold.

3.2 Ferroelectric Phase Shifters

We have already devised relatively low loss phase shifters
based on thin ferroelectric films (Refs. 10 to 12). A novel
hybrid phase shifter combining an analog ferroelectric section
and a “digital” switch was devised. A photograph of the
hybrid ferroelectric/semiconductor phase shifter is shown in
Figure 4. Four coupled microstrip sections are attached to a
virtual short circuit (radial stub) via a GaAs beam lead diode.
When the diode is forward biased, a short circuit terminates
the analog phase shifters and provides an additional approx-
imately 180° of phase shift. When the diode is off, the termi-
nation is essentially an open circuit with a near unity
amplitude reflection coefficient and approximately 0° of phase
shift. Average loss was 3.5 dB. A loss of 1.2 dB is assigned to
the diode since replacing it with a true open (off) and wire
bond (on) reduces the loss to 2.3 dB. Maximum phase shift
was =320° (Fig. 5).

Bandwidth and true time delay are important considera-
tions. Figure 5 shows that the insertion phase shift is essen-
tially proportional to frequency, and bandwidths in excess of
5 percent are achievable.

“Reflectarray Assumptions: 10 W, 40 percent efficient TWT feed, 4 dB loss
phase shifters, 41 mW per channel controller power consumption. Direct
Radiating MMIC Array Assumptions: 100 mW, 15 percent efficient MMIC
amplifiers, 85 percent efficient power supply.



Figure 4.—Hybrid X-band ferroelectric/semiconductor phase
shifter on 0.5-mm-thick lanthanum aluminate. The device
is 10 by 9 mm. The 1.2-mm-long G-S-G pad is sacrificed
(sawed) after characterization, so final size is approximately
9 by 9 mm?. Each Ag/4 electrode produces =40° of phase
shift. Inset shows SEM of partial electrode.
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Figure 5.—Measured insertion phase of hybrid ferroelectric/
semiconductor phase shifter as a function of bias voltage
on the ferroelectric section and switch state.

3.3 Phased Array Radar

Three specific NASA Earth Science applications illustrate
the potential benefits of power-efficient, beam-steerable
phased array X-band antennas (Table I). Precipitation radar is
used to measure the amount and type of precipitation (water
and/or ice) in selected three-dimensional columns from the
earth’s surface up to a height of about 20 km. This data is
crucial for climate modeling and weather forecasting. The
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TABLE I.—SUMMARY OF ANTENNA PARAMETERS FOR
SPACE-BASED PHASED ARRAY ANTENNAS

Parameter Precipitation | TerraSAR—X | Specifications
Radar-2 (Global | (spotlight |for SAR Antenna
Precipitation mode) (Snow and Cold
Mission) Land Processes)
Frequency 13.6 GHz 9.65 GHz X-band
Orbit 400 km 514 km 510 km
Dimensions 24by24m | 48by0.7m | Not specified
(58 dBi)
Beam-steering +17° +20° (£0.75° N/A
in spotlight
mode)
Swath width 245 km 50 km 40 km
Horizontal 5km 15m 50to 100 m
resolution, m (azimuth
resolution)
Range resolution 250 m 1m 2 cm accuracy
Pulse width 1.67 usec Not specified
Pulse repetition 4000 Hz Not specified
factor
Transmit 300 MHz Not specified
bandwidth
Peak power >700 W 2 kW (peak) [ 100 W (peak)
Mass 375kg 400 kg
Power 350 W 4500 W
consumption

13.8 GHz PR-2 electronically steerable phased array antenna
(Ref. 9), scheduled for upcoming Global Precipitation
Mission, illustrates the key attributes of this antenna class. The
TerraSAR—X is used to take high resolution images of the
Earth (Ref. 13). The FRA could be engineered to perform
similar functions at considerably developmental costs and
power requirements.

The purpose of Snow and Cold Land Processes Mission
(SCLP) is to measure the quantity and distribution of water
stored in the form of snow, on land and on ice sheets
(Ref. 14). An objective of this mission is to correlate terrain
variations with microclimate-related snow processes, and
understand how these interactions impact macroclimate condi-
tions. Hence high spatial resolution is important to the success
of this mission, and a goal of 50 to 100 m resolution has been
set. Since the space craft orbit is nominally 510 km, this reso-
lution can only be achieved using synthetic aperture radar
(SAR). Prior measurements have shown that the optimal fre-
quency range to measure volumetric snowpack properties is
8 to 18 GHz. The key instrument for the SCLP mission will be
X-band (8 to 12 GHz) and Ku-band (12 to 18 GHz) SAR.
SCLP seeks to relate changes in snow levels and distributions
with weather events; hence time resolution on the order of 3 to
6 days will be needed. Benefits from the SCLP mission in-
clude better understanding of the water cycle and improved
water resource management, and enhanced ability to predict
natural and human-induced disasters and alleviate their nega-
tive impacts. Better understanding of snow accumulation and
water storage cycles is also critical to refining models for
climate change hypotheses.




Electronic beam steering in the active SAR antennas can
substantially improve the quality of data generated by SLCP.
The baseline X— and Ku—band synthetic aperture radars for the
SLCP mission specify that both antennas will be non-
scanning, and will share the same aperture. The aperture will
have a 30° incidence angle. The X—band antenna will have
100 W peak transmit power, with a resolution of 100 m and
swath width of 40 km. Although the simplicity and economy
of this approach is appealing, the major shortcoming is that
approaches such as conical scanning are needed in order to
achieve temporal measurement resolutions of 3 to 6 days. This
necessitates a gimbaled design, where the antenna feed is
mechanically rotated so as to increase the swath area. Howev-
er, the mechanical vibrations decrease resolution. Even for
non-gimbaled, non-steerable antennas, satellite motion and the
rotating motion of the Earth causes displacement of the targets
along the range axis during illumination (Ref. 15). To main-
tain the antenna phase center relative to points on the ground,
either the satellite must be constantly steered in the yaw direc-
tion, which consumes fuel and shortens mission lifetime, or
the antenna must be electronically steerable in the azimuth
plane. Electronic beam steering would enable the antenna to
lock onto ground features and auto-correct for spacecraft
motion. To illustrate, space-based beam-steerable X—band
SAR antennas such as Radarsat—2 and TerraSAR—X achieve
1 m resolution when operated in high-resolution modes.

Figure 6 illustrates potential performance characteristics for
an FMCW system. The horizontal distance between transmit-
ted and returned signal 7 is related to range R as R =¢t/2 and
the maximum unambiguous range Ry, is ¢T/2 where T is the

Antenna Position Commands, Status

waveform repetition period. In a pulse modulated system,
Rmax = ¢/(2f,) where f,; is the pulse repetition frequency.
Given a bandwidth B =1f;; — fum, from similar triangles
R = cfgT/(2B) where fy is the beat note frequency. The corres-
ponding range resolution is ¢/(2B) which is below 1 meter for
an X-band FRA.

In order to provide a meaningful demonstration of a proto-
type, a preliminary design for an X-band Reflectarray Precipi-
tation Radar System would use a target beamwidth of about
2°. This specification represents a compromise between the
resolution offered by state-of-the-art instrumentation such as
that aboard the Tropical Rainfall Measuring Mission and pro-
posed for the Global Precipitation Measurement System and
realistic costs. This beamwidth corresponds to a 2560 element,
~1 m diameter FRA, an achievable goal. A schematic of the
radar digital signal processing is shown in Figure 7.
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Figure 6.—Fundamental frequency modulated
continuous wave radar waveform relationship.
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Figure 7.—Schematic of the radar system that will operate with the FRA.
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4.0 Summary

A key challenge is constructing the active array economi-
cally for radar applications—a corerstone of this work. The
ferroelectric phase shifters require only two bias lines and can
be fabricated using a simple three-step (selective etch, metalli-
zation, and encapsulation) lithography process. The smallest
feature size is the 8.5 pum electrode separation (inset Fig. 4) as
opposed to submicron lithography that would be required for
GaAs MMIC technology. The reflectarray structure requires
only a multilayer DC bias distribution board, a support platen
which also serves as the DC and RF ground plane, and the RF
layer populated with MxN devices (patch antennas and phase
shifters) that can be automatically placed and wire bonded.
These qualities lead to comparatively low cost. A corrugated
or dual-mode feed horn plus supporting struts, an amplifier,
and a controller complete the system front end. The gradual
increase in power for the reflectarray curve in Figure 3 is
associated with the increase in the number of controller chan-
nels. A 616 channel controller that consumed only 25 W has
been built to operate the FRA described in Section 3.0. We
expect that a 1 m X—band FRA would comprise 2560 individ-
ual radiating elements and phase shifters and produce about a
2° beamwidth and offer better than 1 m range resolution.
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